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Dynamical 

The dynamics of the short-range order as well as the long-range order in the 
nonlinear cooperative system is investigated specifically for a kinetic Ising 
model in the Bethe approximation. The phenomena of critical slowing down 
near the transition temperature Tc and anomalous fluctuation below Tc are 
directly related to the instability of the long-range order. The dynamics of 
the short-range order is essentially a fast mode and is noncritical. However, 
through the nonlinear coupling the short-range order is also influenced by 
the critical behavior of the long-range order. 

KEY W O  R DS : Kinetic Ising model; quasi-chemical approximation ; critical 
slowing down; anomalous fluctuations far from equilibrium; coupling 
between order parameters. 

1.  I N T R O D U C T I O N  

One of the most fascinating and outstanding problems in statistical physics 
concerns nonlinear phenomena in cooperative systems. The nonlinear nature 
of the phase transition as an equilibrium process can be seen even in the 
simplest molecular field approximation, (1) although the real subtleties of the 
phenomena can be understood only by more elaborate theories such as 
developed in recent years. (2) 

In nonequilibrium, the nonlinearity of  cooperativity is manifested in 
various sorts of  dynamical properties. (3-~ Relaxation of order parameters is 
generally nonlinear, except for small deviations from equilibrium. The non- 
linearity is even more pronounced as the system approaches a critical condi- 
tion. In the very neighborhood of the critical point, even a very small deviation 
from equilibrium relaxes nonlinearly. Nonlinear relaxation is generally 
associated with nonlinear response and with anomalous fluctuations. This 
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aspect of cooperative phenomena has been treated in a simple way in a 
previous paper, (4) which will be referred to as K M K .  (4) There the Weiss-Ising 
kinetic model (e) was discussed as a specific example. 

In this work we take up the same model as a typical example of coopera- 
tive systems and treat it in a better approximation which corresponds to the 
Bethe-Peierls approximation, (7) or the quasi-chemical approximation, (8) well 
known in statistical thermodynamics. In the spirit of this approximation, we 
explicitly consider only a few macrovariables to describe the state of ordering 
of the cooperative system; namely a macroscopic state is defined by the long- 
range order and the short-range order parameters, which correspond to the 
magnetization density and the energy density. (7-9) This is of course an 
essential limitation of the approximation, which prevents us from any 
approach to the real singularities appearing at the critical point in equilibrium 
and nonequilibrium properties. Accepting this sacrifice, however, we can 
look into the global nature of nonlinear dynamics of a cooperative system 
in which different order parameters couple to each other through the intrinsic 
internal interactions. The long-range order, or the magnetization, is directly 
related to the phase transition, whereas the short-range order is only indirectly 
related to it. However, generally there should be a complex interplay of their 
dynamics. 

Some years ago Kikuchi (1~ treated this problem, concentrating his 
attention only on the averaged motion of the order parameters. Here we shall 
extend his treatment to include fluctuations of the order parameters. Taking a 
somewhat different view from that of Kikuchi, we use the formulations as 
developed by KMK, which give the evolution equations for the averaged 
motion and the fluctuation of the order parameters. From these equations, 
we can easily see how the equilibrium states are determined and how the 
order parameters are coupled to each other in nonequilibrium states even in 
far-from-equilibrium conditions. 

In Section 2, we describe the model and derive the evolution equations 
assuming single-spin flips as the underlying basic microscopic mechanism. 
Equilibrium properties are briefly treated in Section 3. In Section 4, the 
averaged motion and the fluctuations are investigated under some typical 
conditions above and below the transition temperature. In the appendix an 
application to a binary alloy system is briefly discussed in order to compare 
the present approach to that of Kikuchi. 

2. E V O L U T I O N  E Q U A T I O N S  

We first briefly summarize the main points of KMK relevant to the 
present work. Extensive macrovariables of a macrosystem are denoted by the 
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set (X1, X2 .... ) = {Xi}. They are assumed to make a Markovian process to be 
described by the master equation, 

(d/dt)P({X,},  t) = - ~ W({X~}; {ri})P({X~}, t) 
{rO 

+ ~ ,  W({X ,  - r,}; {r,})P({X, - r,}, t) (1) 
{ri} 

where P({Xd, t) is the probability of finding the variables {Xd at these values 
at time t, and W({X~}, {r~}) is the transition probability from the state {J(~} to 
{X~ + rd with the jumps (r~}. Each of the macrovariables is of the order of the 
size, or the number N, of elements in the system, whereas elementary jumps 
(rd are only of the order of unity. Since any elementary process occurring at 
any one of the constituent elements of the whole system induces a transition 
of the variables {X~}, the transition probability W should be proportional to 
the size N, so that we assume 

W({X,};  {ri}) = Nw({x,}; {r~}) (2) 

where we define the densities 

x~ = X J N  (3) 

corresponding to the extensive variables {X,}. The moments of the normalized 
transition probability are defined by 

= w({x,); ( 4 )  
TI r2 

Then the evolution of the averages 

X,(t) = ( x , ) ,  (5) 

and 1Lheir fluctuations 

N - ! o , j ( t )  = ([xi - 2i(t)][xj - ffj(t)l)e (6) 

can be shown to be governed, up to the leading order of N-1, by(~) 

d 2~(t) = C~,({2,}) (7) 
dt 

d - -   Cl, 

Now we consider an Ising spin system composed of N spins on a latticeJ 6) 
The number of up spins is denoted by N+, that of down spins by N_, and 
their difference by X; namely 

N+ + N _  = N ,  N+ - N _  = X (9) 
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The Ising spins are interacting with the nearest neighbor interaction J, which 
is assumed to be ferromagnetic. The total number of up-up spin pairs is 
denoted by N+ +, that of down-down pairs by N_ _, and that of up-down 
pairs by Q. These numbers are related by 

N++ + U _ _  + Q = z U / 2  (10) 

N++ + �89 = zN+/2 (11) 

U _ _  + �89 = z N _ / 2  (12) 

where z is the coordination number. Thus the total energy of the spin system 
is given by 

E = - J ( N + +  + N _ _  - Q) - gtzBH(N+ - N _ )  

= - (z/2)UJ + 2JQ - gp, B H X  (13) 

where the first term is the exchange energy and the second term is the Zeeman 
energy in the presence of an external field H. We choose X and Q as the macro- 
variables to define a macrostate of the spin system; X is essentially the total 
magnetization and Q is the exchange energy. The latter is also the total area 
(in three dimensions) or the total length (in two dimensions) of the boundaries 
between domains or clusters of up spins and down spins. The corresponding 
densities will be denoted by x and q; namely 

x = X /N ,  q = Q/N. (14) 

The spins are in contact with a heat reservoir, which induces spontaneous 
flips of spinsJ 11) If  an up spin surrounded by k up spins and z - k down spins 
is flipped down by thermal agitations, X decreases by two and Q by 2k - z. 
The probability per unit time for occurrence of such changes of X and Q is 
assumed to be 

W+(X,  Q --> X - 2, Q + 2k - z) = 1 _N+(k) exp[K(z - 2k) - tz] (15) 

Here �9 is a proper rate constant of spin flips determined by the temperature. 
The exponential factor takes care of the energy change associated with this 
type of spin flip, K and iz being 

K = J/kBT, t~ = g l t . H / k s T  (16) 

The second factor ~V+ (k) is the average number of up spins with this particular 
local configuration of their nearest neighbors. Our approximation consists in 
assuming this to be given by 

+) 
= N+ ~]k (zN+/2)" (17) 
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This means that in a macrostate defined by X and Q, an up spin finds k up 
and z -  k down spins as its neighbors with the probability in random 
distribution of spin pairs under the restriction of the given number of different 
types of spin pairs on the whole lattice. This assumption is not rigorous, but 
is an approximation which is equivalent to the Bethe-Peierls method. In 
fact, in a somewhat different context, the same idea was used by Takagi in his 
reformulation of the Bethe-Peierls method. (12) 

Similarly, for flips of down spins with k down spin neighbors, we assume 
the transition probability 

W _ ( X ,  Q--> X + 2, Q + 2k - z) = 1 iV_(k)exp[K(z - 2k) + t~] (18) 
T 

with 

(19) 
\ z - k / l \  z , 

Since the variables X and Q are extensive, these transition probabilities have 
the fi~rm (2) when rewritten in terms of the densities x and q. So we have 

( z )  nk+ +(q/2) z-k ei;(~_2~)_ ~ (20) w+(x, q; - 2 ,  2k - z) = n+ k (�89 ~ 

( ~ )  n~--(q/2)~-k e r~(~-2~)+~ (21) w_(x,  q; 2, 2k  - z) = n_ (�89 ~ 

where we put 
n++ = N++/N,  n__  = N _ _ / N  

It is now an easy task to write the evolution equations. For this purpose 
we define 

/ . .  e - K  . l ~ e i ; \  z 
|"+ + ~.--.-----~ .1 e-U (22) C+ = ~ ,  w+(x, q; - 2 ,  2k  - z) = n+ 

�89 + l 

�89 e u (23) 

which are used as the generating functions of the moments, namely 
[ \ m'  

C r a m , =  
�9 _ \ 

Equation (7) now reads 

ax/at  = (2/~-)(c_ - c+)  (24) 
and 

dq z [  ( n + + e - K - � 8 9  C [ n - - e - I ; - � 8 9  (25) 
d---[ = 7r C+ ~ + + e _ K ~  �89 + - l f f - _ - ~ + ~ ] ]  

where x, q, and other density variables stand for the corresponding averages. 
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By the relations (9)-(12), the above equations can be solved for x and q. 
Equation (8) for fluctuations reads 

a~.: = 2b~xo~ + 2bx~a~ + (C+ + C_) 

d 

+ 7" - C +  ~ + e _  K u �89 

d 
d-t %~ = 2bq~%q + 2bqq%~ 

(26) 

C [n__e  -K - �89 (27) 
+ - \ n _ _ e  -K + I~q-EK)J 

+ 2~zr {C+[(z  - 1)(~'k++e-K -- �89 + 1 +e -K-~  ~ ,  

+ C_[(z  - " ' / n - - e - K  -- �89 + ,]} 
where 

C : -  l 

C z -  + _( ~ 1  

Z2 e-K ) 
2 n++e -K + �89 ~ 

z 2 e-K ) 
2 n_ _e-K + �89 K 

(28) 

( 1 1 ) 
rbx~ = - z ( e  r - e - r )  C+ n++e -~ + �89 K -  C _ n _ _ e  - r  + �89 r 

z [ n++e-K--�89 e - ~  1)  
�9 box=~C+ ( z -  l) - ; 7  n + § e-  K -~ �89 \2 n + + e-  K + �89 K 

z e -K ] 
+ 2 n++e -K + �89 K 

- ~ C_ (z - 1) n _ _ e  -K + �89 K g n _ _ e  -K + �89 K n_ 

z e -K ] 
+ "2 n - _ e  -K + �89 K 

z 1 [ n+ +e -K - �89 K 
rbqq = ~ C+ n+ +e -K + �89 [(Z -- 1)(e K -- e-K) n+-- § -K T �89 K 

-- (e K + e-K)  + g C -  -K 
n_ _e + �89 ~: 

x [ ( z - - 1 ) ( e  K -  e-X) n - - e - K - � 8 9  ] n__e  -K + �89 K -- (eK + e-K) (29) 
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Equations (26)-(28) are linear, inhomogeneous equations to determine the 
evolution of fluctuations, in which the coefficients are functions of time as 
determined by Eqs. (24)-(25). 

. EQUILIBRIUM PROPERTIES 

Equilibrium is determined by equating the right-hand sides of Eqs. ( 2 4 ) -  

(28) to zero. From Eq. (24) we have 

c +  = c _  (30) 

Using this, we get from Eq. (25) 

qZ/n+ +n__ = 4e -4K (31) 

which is the quasi-chemical condition of Fowler and Guggenheim. (8) Equation 
(30) is then rewritten as 

( n _ / n  + ) ~-1 = e2~'(n_ _ /n+ +)~,2 (32) 

Equilibrium values of x and q are thus calculated from Eqs. (31) and (32) with 
the use of the identities corresponding to (9)-(12). This procedure is in fact 
equivalent to the Bethe-Peierls approximation. In particular, the critical 
point is found to be 

kBTc  = 2J[ log[z[ ( z  - 2)1 (33) 

in the absence of external magnetic fields. 
The magnetization vanishes above the critical temperature if there is no 

magnetic field; then the exchange energy density becomes 

z 1 
qe = 2 1 + e 2~c (34) 

Below the critical temperature there will be a spontaneous magnetization. 
The solution of Eqs. (31) and (32) is expressed as 

= t a n h ;  ~b Xe 

z tanh[(z/2)ff] (35) 
qe = ~2 e 2~ sinh[(z - 1)~ + (2t~/z)] 

in terms of the parameter ~ defined by the equation 

e2 K = sinh[(z/2)~] 
sinh{[(z/2) - 1]~ + (2tz/z)} (36) 

When the magnetic field is smaller than the coercive field, that is to say, 

It'l 
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Eq. (36) has three real solutions for q~, which correspond to the stable, the 
unstable, and the metastable states. The marginal value/~c is defined by the 
conditions 

and 

(2 - 1) c~  - 1)r + ~-~] = 2 tanh2r162 

sinh[(z/2)r (37) 
e2r  = sinh{[(z/2) - 11r + (2~dz)} 

When the magnetic field exceeds tz~ in magnitude, there is only one stable 
solution. 

Fluctuations are determined by Eqs. (26)-(28). They are related to thermo- 
dynamic responses, namely 

, ,xx = ( a x / ~ t , ) ~  

,,x~ = - k ( a x l ~ K L  = (~q le t , )K  (38) 

,~oo = - � 8 9  

In the paramagnetic phase, the fluctuations are given simply by 

2 1 
G X X  

Z e - 2 K  - -  e -2go  

a~q = 0 (39) 

z 1 
aq~ = 8 cosh 2 K 

In the ferromagnetic phase, they are expressed in terms of the parameter ~ as 

2 sech2[(z/2)r coth{[(z/2) - 114 + (2tz/z)} 
a ~  = z coth[(z/2)r - (z - 2)coth{[(z/2) - 1]r + (2t~/z)} 

z sech2[(z/2)r 
axq = - z coth[(z/2)~] - (z - 2)coth{[(z/2) - 114 + (2/z/z)} 

and 

z tanh[(z/2)r 
aq~ = 2e  2K sinh[(z - 1)q~ + (2t~/z)] 

[ 1 - z sech 2 [(z/2)r - 2(z - 1) tanh[(z/2)q~] coth[(z - 1)4 + (2~/z)]] 
X /__ ~ 2 ~ ] - -  ~ -- 2 ) ) ~  = 1-~ -IU (2-~/z-~ J 

(4o) 
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4. DYNAMICS FAR FROM EQUILIBRIUM 

In this section, we discuss the averaged motion and fluctuations under 
some typical conditions above and below the transition temperature. First 
the paramagnetic phase is considered, where no instabilities exist. Then we 
treat the ferromagnetic phase, in which anomalous fluctuations occur due to 
the existence of an unstable state. The internal coupling between the long- 
range order and the short-range order is investigated in the nonlinear 
dynamics of the cooperative system. Finally this coupling is examined in 
detail in the case where a magnetic field is applied in the direction opposite 
to the spontaneous magnetization. 

4.1. Paramagnetic Phase Without an External Field (T > Tc, H = O) 

We first consider the relaxation process of magnetization above To; 

initially magnetization is set at a finite value and then released to relax. The 
nonlinear dynamics of the averaged values and the fluctuations are calculated 
numerically by Eqs. (24)-(28) and they are shown typically in Fig. 1. The 
initial state is chosen to be far from equilibrium, namely a perfectly ordered 
state where x = 1, q = 0, and crx,r = cr=q = %q = 0. 

In order to make the nonlinear effect clear, we first make the lineariza- 
tion approximation around the equilibrium state, given by Eqs. (34) and (39). 
The linearized equations of motion are given by 

1 32 e-K sinh K 1 
z (cosh K) ~-2 e -2K - e-2Ko ~q 

d 3x  1 3x  
dt  % 

d 1 8q ~ Sq = - ,r--- t 

d 8 ~ x  2 3~== + 
dt ,rs 

d-t = - + 3cr~q 2 , r  

(z - 1) 2 sinh 3 K - (z + 1) cosh Ksinh  2 K - 2 sinh K 
x (cosh K)~+l(e  - 2 s  - e-2So) 

d8%q= -28%q 
dt  ,r I 

where 

(41) 

(42) 

(43) 

1 1 z ( e -  2K _ e -  2r~o) (46) 
�9 r,  = 7 (cosh K) ~ 

~x 

(44) 
4(z - 2) sinh K 

~- (cosh K) ~-1 ~q (45) 
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Fig. 1. The relaxation of averaged values x and q and fluctuations o==, o,:q, and o~q at 
T = 2.0 To and 1.1 To. Here z = 4 and k,Tc = 2J/log 2. The dashed lines represent the 
exponential behavior determined by Eqs. (41)-(45) at T = 1.1 Tc. Now 1/z~ and 1/r are 
0.11 and 3.63, respectively. The dot-dot-dashed lines represent the nonlinear equation (50). 

and 

1 1 4 
~'1 r (cosh K)  z -2  (47) 

Exponential  relaxations according to the linear approximat ion are shown at 
T = 1.1To by dashed lines in Fig. 1. In Figs. la  and lc ,  there appears critical 
s lowing down in x and ~xx, which can be represented well  by the l inearized 
treatment  with a relaxation t ime ,8. Initial rapid relaxation in Fig. la  repre- 
sents the deviation f rom the linear approximat ion and is due to  the nonlinear 
effect.(~a) 
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In the linearized scheme, there appears additionally a noncritical short 
relaxation time ~-t corresponding to the short-range order. This short relaxa- 
tion may be attributed to the fast relaxation process of the small clusters, 
which are easily perturbed by the surrounding reservoir. These two time 
scales, r~ and ~I, are already found in the computer simulation of the Ising 
system, (14) where the spin correlation between nearest neighbors is found to 
relax more rapidly than the magnetization does. 

In the evolution of q, (rxq, and %q, however, there is actually found the 
phenomenon of critical slowing down (Figs. lb, ld, and le). Evidently the 
linear approximation is insufficient for the short-range order near the transi- 
tion temperature. The short-range order follows adiabatically the slow 
motion of the long-range order through the nonlinear coupling. 

We have to supplement the motion (42) with the nonlinear term to get 

d 3 q =  - 1 3 q - A 3 x  2 (48) 
dt 7 r 

where 

A = z ( z  - 1) sinh K 
e2~(cosh K)~- 1 (49) 

Near the transition temperature, where z~ << 7s, q( t )  is adiabatically deter- 
mined by x ( t )  as 

z l [ z - l ( 1 - e - 2 ~ ) x 2 ( t ) ]  (50) 
q( t )  = 2 1  + e 2K 1 2 

and relaxes slowly with the relaxation time ~-J2, exhibiting a critical long tail. 
This tail is also induced in ~qq, and both are shown in Figs. lb and lc, by the 
dot-dot-dashed lines. The relation (50) between the long-range order and the 
short-range order is slightly different from the molecular field relation 
q = (z/4)(1 - x2). The solution (50) is nothing but the adiabatic solution 
(~ = 0) of Eq. (25) expanded in powers of x. The critical dynamic behavior 
of the short-range order is ascribed to the adiabatic nonlinear coupling with 
the long-range order. 

4.2. Fe r romagnet ic  Phase W i t h o u t  an External  Field (T < To, H = 0) 

Next we consider the growth of magnetization below To. If the system is 
initially kept at a temperature higher than Tc and is then suddenly cooled 
below T~, it will stay in a state with zero magnetization, because that state is 
stationary though unstable. In order for the system to reach the symmetry- 
broken state with a spontaneous magnetization, we make the system start 
from a state with some small magnetization. The dynamics far from equi- 
librium is shown in Fig. 2, where the initial state is taken to be x = 0.0001, 
q = O, and ~r~:r = (r~q = aqq = O. 
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Around the unstable stationary state, given by Eqs. (34) and (39), the 
evolution of the system is very interesting. Due to the instability of the 
system, rs is now negative and x increases exponentially. Meanwhile, q 
relaxes rapidly to its unstable value q~ given by Eq. (34), as is shown in Fig. 2b. 
Thereafter, q is driven adiabatically away from qu through the nonlinear 
coupling (50) with x. This adiabatic motion of q is represented by dot-dot- 
dashed line in Fig. 2b. As x grows further, the nonlinearity in the evolution 
of x becomes important, and the system relaxes to its stable equilibrium state, 
given by Eqs. (35) and (40). 

Near the equilibrium state without an external field, x and q are no longer 
good linear modes. Eigenmodes are given, up to the order of ~2 near the 
transition temperature, by 

Ys = [1 - O(~2)]x + ~q 

Yr = �88 - 2)~x + [I - O(ff2)ly (51) 

Deviations of the averaged values from those at equilibrium obey equations 
in the linearized from 

(d /d t )3ys  = -(1/~-s') 8ys 

( d / d t ) 3 y ,  = - ( l / r / )  3Yl (52) 
where 

1 1 z~12(z - 2) 1+(~/2~ q~2 
z--~ = ~- 3 ( z -  1) z-1 (53) 

represents the critical slow relaxation time, and 

l = 4 [ z ( z - - 2 ) ] ' z ' 2 ' - l (  z 2 - 2 z + 5  ) 
r /  g [ ( z -  1)~J 1 + 24 ~z 

According to this linear approximation, both x and q relax critically and 
slowly with relaxation time r,', as are shown by the dot-dashed lines in Figs. 
2a and 2b. 

Looking at the fluctuations, we can find their anomalous enhancements. 
Since the initial value exx(t = 0) (1> 0) is far from the unstable stationary 
value (39), which is negative, the fluctuation of the long-range order crxx(t) 
grows large and steadily, proportional to e x p ( - 2 t / r ~ ) .  This causes an 
"anomalous fluctuation" around the unstable state. This anomalous en- 
hancement corresponds to the critical divergence of the susceptibility at 
equilibrium associated with the emergence of  the order or cooperativity in the 
system. 

At equilibrium the fluctuation of the short-range order cr~q or specific 
heat does not diverge but only has a jump at the transition point. On the 
other hand, dynamically an anomalous enhancement is found even in oqq. 
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This anomaly is induced from the nonlinear coupling with the long-range 
order. Since a~( t )  increases anomalously, we can not neglect the non- 
linearity in the evolution. We have to supplement the motion (44) and (45) 
with the nonlinear terms 

8a~q = - ~ +  8axq-  2ASax. Sx (54) 

d 8,.~176 = - 2 8%. - 4 a  8,.~. 8~ ( 5 5 )  
d t  "r I 

Near the transition temperature, where ~ >> T s, fluctuations follow adia- 
batically the variation of x and a~x. These adiabatic fluctuations determined 
by Eqs. (54) and (55) are given by 

axq( t ) "~ - �89  - 1)e- 2K(tanh K ) a  **(  t ) x (  t ) (56) 

and 

aqq(t)  .., �88 - 1)2e-~r(tanh 2 K ) a ~ x ( t ) x ( t )  2 (57) 

These are nothing but the approximate solutions of Eqs. (27) and (28) in the 
adiabatic case, 6~ = 0 and 6qq = 0, neglecting the slow (bx~)  and less 
anomalous terms, 

(rxq = - (bqx/bqq)a~x,  (rqq = - (bq~/bqq)a.q (58) 

As x increases slowly (oce-t/' 0 and the fluctuation exx increases anomalously 
in proportion with e-2~/'~, the fluctuations in the short-range order are 
enhanced as ~q ~ e-3t/,, and eqq ~ e-4t/',, which agree with the enhance- 
ments shown by dot-dot-dashed curves in Figs. 2d and 2e. 

Intermediately the mode recombination sets in through the nonlinear 
effect, and finally fluctuations approach the equilibrium values. This final 
relaxation process is well approximated by the linearized treatment around 
the equilibrium state (40): 

d(a%~)/dt = -2 ( .V)  -1 a~,~ + u1 8y, + u~ 8y, 

d ( 8~ s r ) / d t  = - [ ( z j ) - i  + ( r / ) -1]  8(rs r + U3 By, + U4 8yi (59) 

d(8~r = -2(.~s') -1 a~.  + U~ 8y~ + U6 ay~ 

where the U's are the time-independent and temperature-dependent co- 
efficients, their explicit forms being complicated and not so important. The 
linear approximation (59) is shown by the dot-dashed lines in Figs. 2c-2e, 
and fits well with the numerical calculations. 
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4.3. Ferromagnetic Phase with an External Magnetic Field 
( r<  T~,H= O) 

In order to see the adiabatic character of the motion of the short-range 
order and the nonlinear coupling between the long-range order and the short- 
range order more clearly, we apply a magnetic field to reverse the magnetiza- 
tion through the value zero. Initially the system is kept in an equilibrium state 
at some temperature below Tc without an external field. Then we apply a 
magnetic field H or/~, larger than the marginal field Hc or/~c, in the direction 
opposite to the initial magnetization. (15~ Examples of the computed temporal 
evolution of the system are shown in Fig. 3. 

In the averaged motion of x, we find a flat region before x turns down. 
The system tries to remain in the "metastable"(15~ state. The system, however, 
is actually unstable, and accordingly the fluctuation ~xx increases anomalously 
through this " la ten t"  period. 

If  we assume that the short-range order follows adiabatically the motion 
of the long-range order, we can expand the adiabatic relation t) = 0, given by 
Eq. (25), with nonzero magnetic field in powers of x and we get 

z 1 1 - e -2K q(t) = ~ 1 + e 2~ {1 - (tanh ~)x 2 [(z - 1) - z tanh 2 ~]x 2 + ..-} 

( 6 0 )  

which agrees completely with the temporal behaviors of q, shown in Fig. 3b. 
For  comparison, we calculated the short-range order given by the molecular 
field scheme, q = (z/4)(l - x2), which is shown by the thin line in Fig. 3b. 

The fluctuations ~x~ and %q" increase through the adiabatic nonlinear 
coupling with crxx. Concentrating on the anomalous behavior determined by 
axe, we obtain adiabatic approximations for ~,~q and aqq with the magnetic 
field, which are expanded in powers of x as follows 

~ = - cosh K tanh/~ 

+-'----2-~z(z - 1) e_2K(tan h K)(sech2 ~ + �89 + ...]~= (61) 

= 

This adiabatic behavior is shown by dot-dot-dashed lines in Figs. 3d and 3e, 
and they fit very well with exact calculations: As x crosses zero and reverses 
its sign, %q becomes small and a~q reverses its sign. Since the crossing occurs 
very rapidly, the adiabatic approximation becomes poor  in this region; in fact 
deviations of the adiabatic curves from the exact ones are noticeable there. As 
a whole, however, the adiabatic nature of the short-range order is obvious. 
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Fig. 3. Cont inued.  

5. C O N C L U S I O N S  

We have investigated the dynamical behavior of the kinetic Ising system 
taking into account the short-range order q as well as the long-range order x. 
The short-range order is not directly related to the phase transition or the 
cooperative change of state, so that it is characterized by a fast relaxation 
time which has no critical slowing down. As the result of nonlinear coupling 
between the long-range and short-range order parameters, the dynamics of 
the latter is affected by the former. Such nonlinear coupling was here treated 
by a set of evolution equations and was illustrated by examples computed 
from these equations. It was shown that the short-range order parameter 
almost follows the slow and critical motion of x: q is induced into its critical 
nature through the nonlinear coupling with x. 

This adiabatic nonlinear coupling is clearly seen also in the fluctuations. 
The fluctuation of x exhibits an anomalous enhancement, indicating the 
instability of the system. This enhancement in axx adiabatically causes the 
fluctuations ~xq and ~q to increase. This enhancement is seen even in 
the "metastable" region, when an external magnetic field is applied. These 
features found for the specific model of Ising spins should be quite general 
for a wide class of cooperative systems. 

A P P E N D I X  

In this appendix, we give a simple derivation of the basic equations for 
the order-disorder transition of A - B  alloys. Those for the most probable 
values were already derived by Kikuchi. We derive the evolution equations 
for fluctuations as well. 
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Table I. Def in i t ion  of Spin Var iables in Terms of A t o m i c  Conf igura-  
t ions, Their  Numbers,  and Associated Chemical  Potent ia l  

i 

Configuration 
on sublattice 

Chemical 
Spin a b Number potential 

+ A - -  N a "  = N + / 2  t~a" = tL+ 

+ - -  B NB b = N + I 2  t~, b = t~+ 

- B - -  NB a = N - 1 2  tzB '~ = t~- 

- - -  A N a  b = N - 1 2  t~.~ b = t~- 
i ii 

The lattice, consisting of  a and b sublattices, is occupied by an A or a 
B a tom at each site. When we consider 50-50 alloys, there are equal numbers 
of  A atoms on a sublattices, NA a, and B atoms on b sublattices, NBb; we 
identify these atoms as up spins. The A atoms on b sublattices and B atoms on 
a sublattices can also be identified as down spins (see Table I). Similarly we 
represent the nearest-neighboring atomic pairs in terms of spins as shown in 
Table II. The numbers N follow the same relations as Eqs. (10)-(12). 

A chemical potential for each configuration and pair interaction energies 
are tabulated in Tables I and II, respectively. Then the total energy of the 
system is given by 

E = - J ( N + +  + N _ _  - Q )  - g ~ B H X  + const 

where 

and 

J = �89162 + ~B~ - 2r > 0 

g ~ s H  = � 8 9  + - ~ _ )  

An atom interchanges its site with one of its nearest neighbors by thermal 
fluctuation. In spins terms, these transition processes are tabulated in Table 
III .  Taking the configurations surrounding the pair into account, we can 

Table II. Def in i t ion  of Pair Numbers  and Interact ion Energies 

Configuration 
on sublattice 

Spin pair a b Number 
Interaction 

energy 

+ - A A N2~ = Q / 2  

- + B B N ~  = Q[2 

+ + A B N , ~ =  N + +  

B A N$ba = N _ _  

~AA 

~BB 

EAB 

EBA ~ EAB 
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Table II1. Exchange Processes in Terms of Spin Variables 

C o n f i g u r a t i o n  o n  

s u b l a t t i c e  s u b l a t t i c e  

P r o c e s s  S p i n  a b a b 

251 

I + + --7" - -  - -  A B --.'- B A 

I I  - - --+ + + B A --> A B 

assume the transition probabilities for each process. Process I occurs with an 
exchange probability 

w + + ( X , Q - + X - 4 ,  Q - 2 z + 2 k + 2 p  + 2 )  

] / (  lzN+'~] 

• [(Np +) (z - �89  1]/kz~/(�89 1]] 

where p + 1 and k + 1 are the numbers of up spins surrounding the initial 
up spins. For process II, the exchange probability W_ _ is given by 

W _ _ ( X ,  Q--> X + 4, Q + 2z - 2k - 2p - 2) 

r z - k - - - 1  

x N_ ]{-eO]/(~zN_]]eK(2k+2~,+2_2z)+~, 
z - - p  l ] \ p  ] l k z -  1/] 

where p and k are the numbers of up spins around the initial down spins. 
We can employ again the method of KMK in this case. Using the same 

notation as in Sections 2-4, we obtain the averaged motions as well as their 
fluctuations: 

dx 4 
d-7 = - ; ('~ + + - , 7 - - )  =- C ( x )  (A. 1) 

dq 2(z - 1) ( n+ +e -K - �89 ~: n_ _e -K - �89 
d--[ = z ,rl+ + n+ +e -• -+ �89 K + 7 - -  n_ _e -K -+ ~--~1 =- C(q) 

(A.2) 
d eC(x) OC(x) 3C(x) (A.3) 
d~ ~ = 2 ~ ~  + 2 - - ~ q  ~*q+2  ~/, 

d aC(q)~ (aC(x) aC(q) '~ aC(x) aC(x) (A.4) 
d--t ~ o  = ~x  = + \---Yd-x + --N-q l xq + ~ % .  OK 



252 Yukio Saito and Ryogo Kubo 

and 

d = 2 8 C ( q )  8 C ( q )  (r 
oqq ~ ~xq + 2 ~ O q  qq - - -  

where we have put 

and 

aC(q) (A.5) 
8K 

n+ +e - K  + l ~ ' e K \ z ( z - 1 )  

n _ _ e -  K + �89 2(z - 1)e2 u 
~ _  _ = n _  _ \ 1--z-z-~n ~ / 

Equations (A. 1) and (A.2) for the averaged values coincide with those derived 
by Kikuchi. Further, we have also derived a set of evolution equations 
(A.3)-(A.5) for fluctuations. 

The equilibrium properties are the same as those in Section 3. By 
linearizing the evolution equations around this equilibrium state, we obtain 
evolution of the same form as in Sections 4.1 and 4.2. Only the relaxation 
times are modified somewhat by a constant factor: 

~ 7 1  = T -  i z 2 e K ( c o s h  K )  1 - 2~(e-  2K _ e -  2Ko) 

and 

~/-a = ~.-12( z _ 1)eK(cosh K)3-2~ 

in the paramagnetic phase (T > Tc), and 

1 1 z ~ + l ( z  - 2) z $2 

and 

1 1 2(z - 2) ~- Zz"- 1 
~'I ~" ( z -  1) 2(~-2) 

in the ferromagnetic phase near the transition temperature (T  < Tc and 
(~ ~ 0). The temporal behavior far f rom equilibrium is similar to the results 
shown in Figs. 1-3. 
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